Tamagawa Number Conjecture for zeta Values

نویسنده

  • Kazuya Kato
چکیده

Spencer Bloch and the author formulated a general conjecture (Tamagawa number conjecture) on the relation between values of zeta functions of motives and arithmetic groups associated to motives. We discuss this conjecture, and describe some application of the philosophy of the conjecture to the study of elliptic curves. 2000 Mathematics Subject Classification: 11G40.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Equivariant Dedekind Zeta - Functions at s = 1 Dedicated to Professor Andrei Suslin

We study a refinement of an explicit conjecture of Tate concerning the values at s = 1 of Artin L-functions. We reinterpret this refinement in terms of Tamagawa number conjectures and then use this connection to obtain some important (and unconditional) evidence for our conjecture. 2010 Mathematics Subject Classification: 11R42, 11R33

متن کامل

Integrality of Stickelberger elements and the equivariant Tamagawa number conjecture

Let L/K be a nite Galois CM-extension of number elds with Galois group G. In an earlier paper, the author has de ned a module SKu(L/K) over the center of the group ring ZG which coincides with the Sinnott-Kurihara ideal if G is abelian and, in particular, contains many Stickelberger elements. It was shown that a certain conjecture on the integrality of SKu(L/K) implies the minus part of the equ...

متن کامل

On the Local Tamagawa Number Conjecture for Tate Motives over Tamely Ramified Fields

The local Tamagawa number conjecture, which was first formulated by Fontaine and Perrin-Riou, expresses the compatibility of the (global) Tamagawa number conjecture on motivic L-functions with the functional equation. The local conjecture was proven for Tate motives over finite unramified extensions K/Qp by Bloch and Kato. We use the theory of (φ,Γ)-modules and a reciprocity law due to Cherbonn...

متن کامل

On the Equivariant Tamagawa Number Conjecture for Tate Motives , Part II . Dedicated to John

Let K be any finite abelian extension of Q, k any subfield of K and r any integer. We complete the proof of the equivariant Tamagawa Number Conjecture for the pair (h(Spec(K))(r),Z[Gal(K/k)]). 2000 Mathematics Subject Classification: Primary 11G40; Secondary 11R65 19A31 19B28

متن کامل

A cohomological Tamagawa number formula

For smooth linear groups schemes over Z we give a cohomological interpretation of the local Tamagawa measures as cohomological periods. This is in the spirit of the Tamagawa measures for motives de ned by Bloch and Kato. We show that in the case of tori the cohomological and the motivic Tamagawa measures coincide, which reproves the Bloch-Kato conjecture for motives associated to tor

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003